Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615009

RESUMO

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Humanos , Animais , Camundongos , Frutose-Bifosfato Aldolase/genética , Catálise , Biblioteca Gênica , Glicina Hidroximetiltransferase/genética , Carnitina , Mamíferos
2.
Front Mol Biosci ; 9: 906390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720133

RESUMO

CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(µ-OH)2(µ-O)4(H2O)4 (γ-SiW10O36)2]10- (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.

3.
Chem Sci ; 13(13): 3674-3687, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35432906

RESUMO

We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (Mpro) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-µM for the final covalent compound (IC50 = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand-protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of Mpro inhibitors towards low nM affinities.

4.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 363-378, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234150

RESUMO

The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.


Assuntos
COVID-19/virologia , Proteases 3C de Coronavírus/química , SARS-CoV-2/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361083

RESUMO

The mammalian protein prestin is expressed in the lateral membrane wall of the cochlear hair outer cells and is responsible for the electromotile response of the basolateral membrane, following hyperpolarisation or depolarisation of the cells. Its impairment marks the onset of severe diseases, like non-syndromic deafness. Several studies have pointed out possible key roles of residues located in the Transmembrane Domain (TMD) that differentiate mammalian prestins as incomplete transporters from the other proteins belonging to the same solute-carrier (SLC) superfamily, which are classified as complete transporters. Here, we exploit the homology of a prototypical incomplete transporter (rat prestin, rPres) and a complete transporter (zebrafish prestin, zPres) with target structures in the outward open and inward open conformations. The resulting models are then embedded in a model membrane and investigated via a rigorous molecular dynamics simulation protocol. The resulting trajectories are analyzed to obtain quantitative descriptors of the equilibration phase and to assess a structural comparison between proteins in different states, and between different proteins in the same state. Our study clearly identifies a network of key residues at the interface between the gate and the core domains of prestin that might be responsible for the conformational change observed in complete transporters and hindered in incomplete transporters. In addition, we study the pathway of Cl- ions in the presence of an applied electric field towards their putative binding site in the gate domain. Based on our simulations, we propose a tilt and shift mechanism of the helices surrounding the ion binding cavity as the working principle of the reported conformational changes in complete transporters.


Assuntos
Proteínas de Transporte de Ânions/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Transportadores de Sulfato/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência , Transportadores de Sulfato/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
J Struct Biol ; 213(2): 107714, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667636

RESUMO

SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.


Assuntos
Calmodulina/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/química , Galinhas , Cromatografia em Gel , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Eur J Med Chem ; 195: 112267, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283296

RESUMO

Protein kinase CK2 sustains cancer growth, especially in hematological malignancies. Its inhibitor SRPIN803, based on a 6-methylene-5-imino-1,3,4-thiadiazolopyrimidin-7-one scaffold, showed notable specificity. Our synthesis of the initially proposed SRPIN803 resulted in its constitutional isomer SRPIN803-revised, where the 2-cyano-2-propenamide group does not cyclise and fuse to the thiadiazole ring. Its crystallographic structure in complex with CK2α identifies the structural determinants of the reported specificity. SRPIN803-revised explores the CK2 open hinge conformation, extremely rare among kinases, also interacting with side chains from this region. Its optimization lead to the more potent compound 4, which inhibits endocellular CK2, significantly affects viability of tumour cells and shows remarkable selectivity on a panel of 320 kinases.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Caseína Quinase II/metabolismo , Humanos , Células Jurkat , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia
8.
FEBS J ; 287(9): 1850-1864, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31661600

RESUMO

Protein kinase CK2 is an antiapoptotic cancer-sustaining protein. Curcumin, reported previously as a CK2 inhibitor, is too bulky to be accommodated in the CK2 active site and rapidly degrades in solution generating various ATP-mimetic inhibitors; with a detailed comparative analysis, by means of both protein crystallography and enzymatic inhibition, ferulic acid was identified as the principal curcumin degradation product responsible for CK2 inhibition. The other curcumin derivatives vanillin, feruloylmethane and coniferyl aldehyde are weaker CK2 inhibitors. The high instability of curcumin in standard buffered solutions flags this compound, which is included in many commercial libraries, as a possible source of misleading interpretations, as was the case for CK2. Ferulic acid does not show any cytotoxicity and any inhibition of cellular CK2, due to its poor cellular permeability. However, curcumin acts as a prodrug in the cellular context, by generating its degradation products inside the treated cells, thus rescuing CK2 inhibition and consequently inducing cell death. Through the intracellular release of its degradation products, curcumin is expected to affect various target families; here, we identify the first bromodomain of BRD4 as a new target for those compounds. DATABASE: Structural data are available in the PDB database under the accession numbers 6HOP (CK2α/curcumin), 6HOQ (CK2α/ferulic acid), 6HOR (CK2α/feruloylmethane), 6HOT (CK2α/ferulic aldehyde), 6HOU (CK2α/vanillin) and 6HOV (BRD4/ferulic acid).


Assuntos
Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Curcumina/farmacologia , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Pró-Fármacos/química , Inibidores de Proteínas Quinases/química
9.
Cell Rep ; 29(13): 4334-4348.e7, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875544

RESUMO

In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting.


Assuntos
Axônios/metabolismo , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Receptores Odorantes/genética , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Misturas Complexas/química , Embrião de Mamíferos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes/análise , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/ultraestrutura , Proteína de Ligação a Fosfatidiletanolamina/deficiência , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Odorantes/metabolismo , Transdução de Sinais , Olfato/fisiologia
10.
J Nat Prod ; 82(4): 1014-1018, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30840451

RESUMO

Casein kinase 2 (CK2) is an anti-apoptotic cancer-sustaining protein kinase. Its crystallographic structures with the natural compounds coumestrol, a phytoestrogen, and boldine, an alkaloid, are reported. Coumestrol shows different inhibitory activity against the isolated catalytic α-subunit and the α2ß2 holoenzyme and is able to discriminate between two conformations of the hinge/αD region, whose intrinsic flexibility is a relevant selectivity determinant among kinases. Boldine explores a small cavity at the bottom of the ATP-binding pocket through a local deviation from planarity, a unique case among CK2 inhibitors. The two compounds have different impacts on protein flexibility, which correlate with their different properties.


Assuntos
Trifosfato de Adenosina/metabolismo , Aporfinas/metabolismo , Caseína Quinase II/metabolismo , Cumestrol/metabolismo , Estrutura Molecular
11.
ChemMedChem ; 13(24): 2627-2634, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30457710

RESUMO

Following the discovery of a type III allosteric modulator of cyclin-dependent kinase 2 (CDK2) characterized by a hexahydrocyclopenta[c]quinolone scaffold, three different series of its derivatives were synthesized and biologically evaluated. Docking of the synthesized compounds into the allosteric pocket of CDK2 allowed the elucidation of structure-activity relationships (SARs). Moreover, the compounds were tested on the wild-type epidermal growth factor receptor (EGFR) kinase domain (KD) and its clinically relevant T790M/L858R mutant form. Herein we describe the first SAR investigation of allosteric ligands that bind to the type III inhibitor pocket of CDK2 and EGFR-KD. Although the activity of the synthesized inhibitors needs to be improved, the obtained results provide clear-cut indications about pharmacophore requirements and selectivity determinants. Remarkably, this study led to the identification of a selective T790M/L858R EGFR allosteric inhibitor that is inactive toward both wild-type EGFR and CDK2. Finally, docking into the T790M/L858R EGFR-KD led us to hypothesize that the compounds bind to the double-mutant EGFR-KD by adopting a binding mode different from that in CDK2, thus rationalizing the observed selectivity profile.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Quinolinas/química , Regulação Alostérica , Animais , Receptores ErbB/genética , Escherichia coli , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Quinolinas/farmacologia , Células Sf9 , Relação Estrutura-Atividade
12.
J Phys Chem B ; 122(49): 11326-11337, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30179482

RESUMO

The fluorescence of Green Fluorescent Protein (wtGFP) and variants has been exploited in distinct applications in cellular and analytical biology. GFPs emission depends on the population of the protonated (A-state) and deprotonated (B-state) forms of the chromophore. Whereas wtGFP is pH-independent, mutants in which Ser65 is replaced by either threonine or alanine (as in GFPmut2) are pH-dependent, with a p Ka around 6. Given the wtGFP pH-independence, only the structure of the protonated form was determined. The deprotonated form was deduced on the basis of the crystal structure of the Ser65Thr mutant at basic pH, assuming that it corresponds to the conformation populated in solution. Here, we present an investigation where structures of the protonated and deprotonated forms of GFPmut2 were determined from crystals grown in either MPD at pH 6 or PEG at pH 8.5, and moved to either higher or lower pH. Both crystal forms of GFPmut2 were titrated monitoring the process via polarized absorption microspectrophotometry in order to precisely correlate the protonation process with the structures. We found that (i) in solution, chromophore titration is not thermodynamically coupled with any residue and Glu222 is always protonated independent of the protonation state of the chromophore; (ii) the lack of coupling is reflected in the structural behavior of the chromophore and Glu222 environments, with only the former showing variations with pH; (iii) titrations of low-pH and high-pH grown crystals exhibit a Hill coefficient of about 0.75, indicating an anticooperative behavior not observed in solution; (iv) structures where pH was changed in the crystal point to Glu222 as the ionizable group responsible for the outset of the anticooperative behavior; and (v) in GFPmut2 the canonical GFP proton wire involving the chromophore is not interrupted at the level of Ser205 and Glu222 at basic pH as in the Ser65Thr mutant. This allows proposing the structure of the deprotonated state of GFPmut2 as an alternative model for the analogous state of wtGFP.


Assuntos
Proteínas de Fluorescência Verde/química , Animais , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrozoários/química , Imidazóis/química , Imidazóis/metabolismo , Microespectrofotometria/métodos , Mutação , Ligação Proteica , Prótons
13.
Hum Mutat ; 38(12): 1761-1773, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895244

RESUMO

Here, we report the identification of three novel missense mutations in the calsequestrin-1 (CASQ1) gene in four patients with tubular aggregate myopathy. These CASQ1 mutations affect conserved amino acids in position 44 (p.(Asp44Asn)), 103 (p.(Gly103Asp)), and 385 (p.(Ile385Thr)). Functional studies, based on turbidity and dynamic light scattering measurements at increasing Ca2+ concentrations, showed a reduced Ca2+ -dependent aggregation for the CASQ1 protein containing p.Asp44Asn and p.Gly103Asp mutations and a slight increase in Ca2+ -dependent aggregation for the p.Ile385Thr. Accordingly, limited trypsin proteolysis assay showed that p.Asp44Asn and p.Gly103Asp were more susceptible to trypsin cleavage in the presence of Ca2+ in comparison with WT and p.Ile385Thr. Analysis of single muscle fibers of a patient carrying the p.Gly103Asp mutation showed a significant reduction in response to caffeine stimulation, compared with normal control fibers. Expression of CASQ1 mutations in eukaryotic cells revealed a reduced ability of all these CASQ1 mutants to store Ca2+ and a reduced inhibitory effect of p.Ile385Thr and p.Asp44Asn on store operated Ca2+ entry. These results widen the spectrum of skeletal muscle diseases associated with CASQ1 and indicate that these mutations affect properties critical for correct Ca2+ handling in skeletal muscle fibers.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Variação Genética , Proteínas Mitocondriais/genética , Miopatias Congênitas Estruturais/genética , Adulto , Idoso , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica , Proteólise , Proteínas Recombinantes , Alinhamento de Sequência , Imagem com Lapso de Tempo , Sequenciamento Completo do Genoma
14.
Biochem J ; 474(14): 2405-2416, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28572157

RESUMO

The regulatory mechanism of protein kinase CK2 has still to be fully clarified. The prevailing hypothesis is that CK2 is controlled by a self-polymerisation mechanism leading to inactive supramolecular assemblies that, when needed, can be disassembled into the α2ß2 monomer, the active form of the holoenzyme. In vitro, monomeric α2ß2 seems present only at high ionic strengths, typically 0.35-0.50 M NaCl, while at lower salt concentrations oligomers are formed. In the present study, size-exclusion chromatography (SEC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and mutagenesis have been employed for the characterization of the oligomeric states of CK2 in solution. SAXS measurements at 0.35 M NaCl show for the first time the shape of the α2ß2 active monomer in solution. At 0.25 M salt, despite single average properties indicating an aggregated holoenzyme, deconvolution analysis of SAXS data reveals an equilibrium involving not only circular trimeric and linear oligomeric (3-4 units) forms of α2ß2, but also considerable amounts of the monomer. Together SAXS and mutagenesis confirm the presence in solution of the oligomers deduced by crystal structures. The lack of intermediate species such as αß2, α or ß2 indicates that the holoenzyme is a strong complex that does not spontaneously dissociate, challenging what was recently proposed on the basis of mass spectrometry data. A significant novel finding is that a considerable amount of monomer, the active form of CK2, is present also at low salt. The solution properties of CK2 shown in the present study complement the model of regulation by polymerization.


Assuntos
Caseína Quinase II/química , Modelos Moleculares , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Cromatografia em Gel , Dimerização , Difusão Dinâmica da Luz , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Peso Molecular , Mutação , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Solubilidade , Eletricidade Estática
15.
ChemMedChem ; 12(1): 33-41, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27860401

RESUMO

The availability of well-characterized allosteric modulators is crucial for investigating the allosteric regulation of protein function. In a recently identified inactive conformation of cyclin-dependent kinase 2 (CDK2), an open allosteric pocket was detected and proposed as a site to accommodate allosteric inhibitors. Previous structure-based approaches allowed the identification of a hit compound expected to bind to this pocket. Herein we report the characterization of this compound by X-ray crystallography, which surprisingly provided a chemical structure different from that previously reported. Therefore, the compound was synthesized and completely characterized. X-ray structures of the synthesized and purchased compounds were found to be superimposable. A reaction mechanism was proposed to explain the formation of the structure indicated by crystallography. Moreover, a stereoselective synthesis was developed to evaluate the biological activity of the pure stereoisomers. Modeling studies were performed to unveil the details of the interaction with CDK2. The activity of the obtained compounds was evaluated with various biological assays. Mutagenesis experiments confirmed binding to the allosteric pocket. Finally, the allosteric ligands were shown to inhibit the growth of lung (A549) and ovarian (SKOV3) cancer cell lines. Therefore, this report presents a thorough chemical and biological characterization of the first small-molecule ligands to be used as probes to study the allosteric modulation of CDK2 activity.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinolinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Quinase 2 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
16.
Biochem J ; 473(4): 365-70, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26635354

RESUMO

Prestin is a unique ATP- and Ca(2+)-independent molecular motor with piezoelectric characteristics responsible for the electromotile properties of mammalian cochlear outer hair cells, i.e. the capacity of these cells to modify their length in response to electric stimuli. This 'electromotility' is at the basis of the exceptional sensitivity and frequency selectivity distinctive of mammals. Prestin belongs to the SLC26 (solute carrier 26) family of anion transporters and needs anions to function properly, particularly Cl(-). In the present study, using X-ray crystallography we reveal that the STAS (sulfate transporter and anti-sigma factor antagonist) domain of mammalian prestin, considered an 'incomplete' transporter, harbours an unanticipated anion-binding site. In parallel, we present the first crystal structure of a prestin STAS domain from a non-mammalian vertebrate prestin (chicken) that behaves as a 'full' transporter. Notably, in chicken STAS, the anion-binding site is lacking because of a local structural rearrangement, indicating that the presence of the STAS anion-binding site is exclusive to mammalian prestin.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Ânions , Sítios de Ligação , Galinhas , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ratos , Homologia de Sequência de Aminoácidos , Transportadores de Sulfato
17.
Nat Commun ; 5: 3622, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24710176

RESUMO

Prestin (SLC26A5) is a member of the SLC26/SulP anion transporter family. Its unique quasi-piezoelectric mechanical activity generates fast cellular motility of cochlear outer hair cells, a key process underlying active amplification in the mammalian ear. Despite its established physiological role, it is essentially unknown how prestin can generate mechanical force, since structural information on SLC26/SulP proteins is lacking. Here we derive a structural model of prestin and related transporters by combining homology modelling, MD simulations and cysteine accessibility scanning. Prestin's transmembrane core region is organized in a 7+7 inverted repeat architecture. The model suggests a central cavity as the substrate-binding site located midway of the anion permeation pathway, which is supported by experimental solute accessibility and mutational analysis. Anion binding to this site also controls the electromotile activity of prestin. The combined structural and functional data provide a framework for understanding electromotility and anion transport by SLC26 transporters.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Proteínas de Transporte de Ânions/fisiologia , Antiporters/metabolismo , Antiporters/fisiologia , Galinhas , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas de Escherichia coli/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Modelos Estruturais , Simulação de Acoplamento Molecular , Proteínas Motores Moleculares/fisiologia , Ratos , Transportadores de Sulfato , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
18.
Biochim Biophys Acta ; 1844(4): 722-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486797

RESUMO

Protein kinase CK2 is a pleiotropic serine/threonine kinase responsible for the generation of a substantial proportion of the human phosphoproteome. CK2 is generally found as a tetramer with two catalytic, α and α' and two non catalytic ß subunits. CK2α C-terminal tail phosphorylation is regulated during the mitotic events and the absence of these phosphosites in α' suggests an isoform specialization. We used a proteomic approach to identify proteins specifically phosphorylated by a CK2α phosphomimetic mutant, CK2αT344ET360ES362ES370E (CK2α4E), in human neuroblastoma SKNBE cellular extract. One of these proteins is lysine-specific demethylase 1 (LSD1 or KDM1A), an important player of the epigenetic machinery. LSD1 is a FAD-dependent amine oxidase and promotes demethylation of lysine 4 and lysine 9 of mono- and di-methylated histone H3. We found that LSD1 is a new substrate and an interacting partner of protein kinase CK2. Three CK2 phosphosites, (Ser131, Ser137 and Ser166) in the N-terminal region of LSD1 have been identified. This domain is found in all chordates but not in more ancient organisms and it is not essential for LSD1 catalytic event while it could modulate the interaction with CK2 and with other partners in gene repressing and activating complexes. Our data support the view that the phosphorylation of the N-terminal domain by CK2 may represent a mechanism for regulating histone methylation, disclosing a new role for protein kinase CK2 in epigenetics.


Assuntos
Caseína Quinase II/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase II/genética , Linhagem Celular Tumoral , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Histona Desmetilases/genética , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Transdução de Sinais
19.
Cell Mol Life Sci ; 71(16): 3173-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24442476

RESUMO

It has been proposed that dual inhibitors of protein kinases CK2 and PIM-1 are tools particularly valuable to induce apoptosis of cancer cells, a property, however, implying cell permeability, which is lacking in the case of selective CK2/PIM-1 inhibitors developed so far. To fill this gap, we have derivatized the scaffold of the promiscuous CK2 inhibitor TBI with a deoxyribose moiety, generating TDB, a selective, cell-permeable inhibitor of CK2 and PIM-1. Here, we shed light on the structural features underlying the potency and narrow selectivity of TDB by exploiting a number of TDB analogs and by solving the 3D structure of the TDB/CK2 complex at 1.25 Å resolution, one of the highest reported so far for this kinase. We also show that the cytotoxic efficacy of TDB is almost entirely due to apoptosis, is accompanied by parallel inhibition of cellular CK2 and PIM-1, and is superior to both those observed combining individual inhibitors of CK2 and PIM-1 and by treating cells with the CK2 inhibitor CX4945. These data, in conjunction with the observations that cancer cells are more susceptible than non-cancer cells to TDB and that such a sensitivity is maintained in a multi-drug resistance background, highlight the pharmacological potential of this compound.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Benzimidazóis/farmacocinética , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Cinética , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade
20.
ACS Chem Biol ; 9(2): 366-71, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24175891

RESUMO

CK2 is a protein kinase essential for cell viability whose activity is altered in several cancers. Its mechanisms of regulation differ from those common to other eukaryotic protein kinases and are not entirely established yet. Here we present crystal structures of the monomeric form of the α2ß2 holoenzyme that allow refining a formerly proposed structural model for activity regulation by oligomerization. Previous crystal structures of the CK2 holoenzyme show an asymmetric arrangement of the two α catalytic subunits around the obligate ß2 regulatory subunits. Asymmetric α2ß2 tetramers are organized in trimeric rings that correspond to inactive forms of the enzyme. The new crystal structures presented here reveal the symmetric architecture of the isolated active tetramers. The dimension and the nature of the α/ß interfaces configure the holoenzyme as a strong complex that does not spontaneously dissociate in solution, in accordance with the low dissociation constant (∼4 nM).


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...